

Tester la fertilisation organique liquide en concombre pleine terre

PRICE

2024

Daisy HOUDMON (CVETMO)

I - BUT DE L'ESSAI

Étude de la faisabilité et de l'intérêt agronomique d'une fertilisation organique liquide en remplacement des engrais de synthèse et minéraux par des engrais organiques. Observation de l'impact de la réduction de la fertilisation sur la pression exercée par les bioagresseurs, dans le but de diminuer le recours aux pesticides.

II - MATÉRIEL ET MÉTHODE

1. Modalités testées

- <u>Modalité 1</u>: engrais organique Geogreen plus 4.5-2.5-5 à 1l/100L (gamme liquamaster société Angibaud)
- Modalité 2 : engrais minéral complet VGTek 12-9-32 à 17gk/100L

2. <u>Dispositif expérimental</u>

Dispositif en blocs

Le tunnel est divisé en 2 unités avec 2 stations de fertilisation distinctes

- Nombre de répétitions : 4
- Nombre de modalités : 2
- Surface de la parcelle élémentaire : 5,6 m² pour la récolte
- Surface de l'essai : 300 m²
- Nombre de plantes par parcelle élémentaire : 7

Voir le plan de l'essai en *Annexe 1* page 9.

3. Paramètres observés

- Aspects sanitaires (notamment botrytis, didymella et oïdium)
- Comportement des plantes : équilibre végétatif/génératif
- Qualité des fruits : couleur de l'épiderme, forme et longueur
- Rendements : précoce et final
- Rendements hebdomadaires et mensuels, les poids moyens des fruits en catégorie « 0 et I»

4. Conduite culturale

LIEU DE RÉALISATION

Station Expérimentale du Domaine de Melleray 45560 SAINT DENIS EN VAL - TUNNEL n°1

CARACTÉRISTIQUES DU TUNNEL

Charpente métallique tubulaire de fabrication SER

Largeur: 9,10 m
Longueur: 33 m
Surface: 300 m²

 Film de couverture : HYTITHERMIC 4 saisons (fourni par SARL BV DIS), bâchage le 15 décembre 2017

SEMIS

Dans cet essai, nous avons choisi d'utiliser des plants greffés. Les semis ont été effectués à l'EARL Clos la Grange le Roi - 45570 SAINT PRYVÉ SAINT MESMIN

Le 09 avril 2024 : semis de ROADIE (Rijk Zwaan)

Le 11 avril 2024 : semis du porte greffe

■ Le 19 avril 2024 : greffage

PRÉPARATION DU SOL

Précédent cultural: laitues pommées et laitues batavia

Désinfection du sol : néant

Apport avant plantation : pas de fumure minérale

PLANTATION

■ Le 16 mai 2024 en culture en sol

STADE DE PLANTATION

VARIÉTÉ	HAUTEUR PLANTE (cm)	NOMBRE DE FEUILLES	COULEUR	PORT	HOMOGÉNÉITÉ
ROADIE (Rijk Zwaan)	39/41	5.5/6.5	Vert	Trapu	Homogène

DENSITÉ DE PLANTATION

1.25 plantes/m², intervalle sur le rang 0.50 m

NUTRITION MINÉRALE DES PLANTES

L'équilibre des solutions est calculé à partir des résultats d'analyse d'eau du forage.

Année de mise en place : 2024

Renseignements complémentaires auprès de : Daisy HOUDMON (24_conc_fert_02 PRICE), CVETMO 196 rue des Montaudins 45560 SAINT DENIS EN VAL, tél 02-38-64-94-32, mail : cvetmo@cvetmo.com Page 2 sur 16

Le tunnel est divisé en deux parties avec chacune leur station de fertilisation distincte.

L'apport d'engrais est réalisé sous forme d'irrigation fertilisante avec l'utilisation d'une pompe Dosatron au taux d'injection de 0.5%.

Tableau des résultats d'analyses d'eau de fertirrigation

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

	TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES																	
D.4.TT	-0	рН	EC	CI meg/l	NH4 meg/l	N03 meg/l	HCO3 meg/l	H2P04 meg/l	S04 meg/l	K meg/l	Ca meg/l	Mq meq/l	Na meq /l	Fe mg/l	Mn mg/l	Cu mg/l	∠n mg/l	B mg/l
DATE	:5	А	А	А	А	А	А	А	А	A	А	А	А	А	А	А	А	А
11/06/24	M1	7,28	0,57	0,44	0,07	0,10	6,58	0,02	0,48	0,26	7,71	0,42	0,55	0,09	0,16	<0,01	<0,01	0,01
11/00/24	M2	6,93	1,59	0,39	2,24	6,70	5,91	1,51	3,80	8,43	7,39	2,52	0,47	0,70	0,57	0,04	0,24	0,17
25/06/24	M1	7,82	0,55	0,43	0,03	0,02	5,73	0,01	0,45	0,19	6,25	0,38	0,42	0,05	0,13	<0,01	<0,01	0,01
25/05/24	M2	7,31	1,66	0,41	2,42	7,42	4,90	1,51	4,23	7,87	6,25	2,72	0,45	0,58	0,54	0,03	0,17	0,18
09/07/24	M1	7,97	0,54	0,40	0,01	0,90	5,23	<0,01	0,45	0,15	6,21	0,38	0,38	0,30	0,13	<0,01	<0,01	0,01
03/01/24	M2	7,46	1,86	0,42	2,43	8,39	4,49	1,82	5,03	9,17	6,30	3,19	0,43	0,79	0,66	0,03	0,21	0,22
22/07/24	M1	7,43	0,55	0,34	0,02	0,45	5,84	0,03	0,46	0,16	5,72	0,39	0,28	0,02	0,12	<0,01	<0,01	0,01
22/01/24	M2	7,51	1,10	0,37	1,17	3,43	5,12	0,80	2,03	3,73	5,62	1,33	0,33	0,22	0,30	0,01	0,07	0,08
05/08/24	M1	7,70	0,55	0,44	0,05	0,03	5,69	0,02	0,44	0,15	5,69	0,39	0,37	0,05	0,13	<0,01	<0,01	0,01
03/00/24	M2	7,53	1,63	0,43	1,86	6,18	4,64	1,13	4,34	6,92	5,89	3,17	0,42	0,36	0,37	0,02	0,12	0,13
19/08/24	M1	7,73	0,54	0,37	<0,01	0,18	5,69	<0,01	0,44	0,16	5,84	0,40	0,28	0,07	0,10	<0,01	0,29	0,01
10/00/24	M2	7,57	1,26	0,42	1,31	4,66	5,22	0,64	1,56	4,15	6,05	1,36	0,32	0,29	0,29	<0,01	0,13	0,08
02/09/24	M1	7,73	0,56	0,47	0,11	0,29	5,93	0,03	0,47	0,19	5,56	0,38	0,41	0,05	0,12	<0,01	<0,01	0,02
02/03/24	M2	7,59	1,29	0,38	1,37	5,24	5,29	0,72	1,59	4,34	5,83	1,45	0,33	0,33	0,30	<0,01	0,08	0,09

En cours de culture, une analyse des éléments fertilisants, directement assimilables et autres éléments nutritifs dans le sol, est effectuée toutes les semaines aux mêmes rythmes que les tests pétiolaires.

Les prélèvements de sol sont réalisés au niveau des bulbes humides.

Les résultats de ces analyses se trouvent en *Annexe* 3 page 11.

CONDUITE ET GESTION DES IRRIGATIONS

→ Centralisées par ordinateur

Mode d'arrosage : irrigation fertilisante localisée par gaines (1l/h).

Conduite ETP avec évolution des coefficients plantes

À la plantation : formation du bulbe	
Du 22 au 23 mai 2024	0,4
Du 24 au 27 mai 2024	0,6
Du 28 mai au 02 juin 2024	0,8
Du 03 juin à la fin de la culture	1.0

CONDUITE DE LA PLANTE

Taille parapluie, palissage droit sur un fil avec tête retombante au centre de la chapelle sur un second fil.

Premier fruit gardé à la sixième feuille, puis suppression d'un fruit sur deux jusqu'au fil.

Sélection de trois axillaires (un en inter fil, deux au niveau du second fil et positionnés de part et d'autre de la tête).

Arrêt de la tige principale à six feuilles après le second fil (l'objectif est de favoriser la croissance et le développement des axillaires).

Arrêt des axillaires à un mètre du sol.

En cours de culture : taille de rajeunissement et effeuillage sur la partie médiane.

CONDUITE MICROCLIMATIQUE

Conduite de la culture sans chauffage.

Refroidissement de l'abri par ouverture latérale des laizes et des portes.

Conditions microclimatiques de l'essai :

Les mesures climatiques sont suivies à l'aide d'un logiciel (Aria). La sonde est placée au milieu du tunnel dans le rang central. Les résultats des mesures sont consignés dans le tableau en *Annexe 5* page 13.

Conditions climatiques extérieures

(cf Annexe 7 page 16)

OBSERVATIONS ET CONDITIONS SANITAIRES

Mesures prophylactiques

Lutte anti-insectes et vide sanitaire sur la serre d'élevage.

Observations et conduite sanitaire en cours d'élevage des plants

Pose de panneaux chromo-attractifs pour détection et piégeage des insectes.

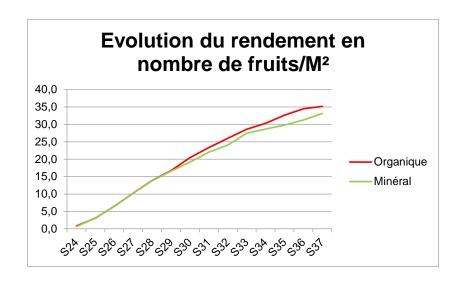
Aucune maladie n'a été détectée.

Observations et conduite sanitaire en cours de culture

→ Protection biologique intégrée

ARRACHAGE DE LA CULTURE

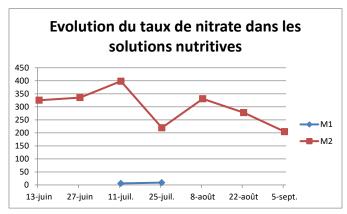
■ Le 16 septembre 2024

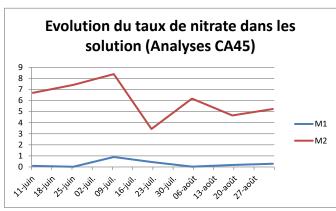

III - RÉSULTATS ET DISCUSSION

RENDEMENT

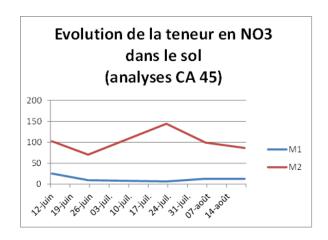
Période de récolte : du 14 juin au 13 septembre 2024

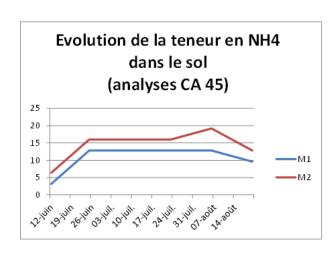
TABLEAU DE RENDEMENT COMMERCIAL (catégorie 0 et 1) HEBDOMADAIRE ET MENSUEL et POIDS MOYEN DES FRUITS


		Org	anique			Mi	néral	
N° semaine	fruits/ m²	kg/m²	pds/frt	% 2ème choix	fruits/m²	kg/m²	pds/frt	% 2ème choix
S24	0,8	0,33	414	0,0	0,6	0,30	481	0
S25	2,3	1,11	489	8,9	2,5	1,24	486	12
S26	3,4	1,89	556	7,3	3,3	1,80	551	5
JUIN	6,5	3,33	515	5,4	6,4	3,33	518	17,5
S27	3,8	2,31	608	4,5	3,8	2,28	600	4
S28	3,6	2,04	564	1,2	3,6	2,04	572	8
S29	2,9	1,30	456	3,0	2,8	1,23	444	2
S30	3,7	2,07	559	2,4	2,6	1,40	530	11
JUILLET	14,0	7,72	552	2,8	12,8	6,95	544	6,2
S31	2,9	1,47	505	1,5	2,8	1,36	482	5
S32	2,7	1,27	475	9,1	2,1	0,94	453	12
S33	2,6	1,30	503	19,4	3,4	1,65	490	26
S34	1,7	0,74	439	37,5	1,2	0,53	440	43
S35	2,4	1,21	512	7,5	1,2	0,55	474	18
AOUT	12,2	5,99	490	15,0	10,6	5,02	473	20,8
S36	1,8	0,88	482	5,0	1,5	0,70	482	0
S37	0,7	0,32	462	0,0	1,9	0,81	427	0
SEPTEMBRE	2,5	1,20	476	5,0	3,4	1,51	451	0,0
CUMUL	35,18	18,24	518	8,05	33,15	16,81	507	10,92



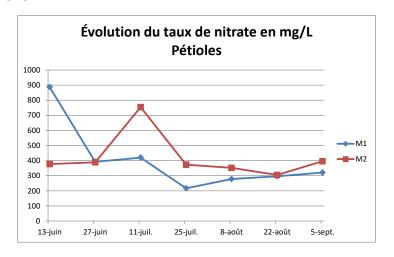
ANALYSES DE SOL ET VÉGETALES


Analyse des solutions nutritives

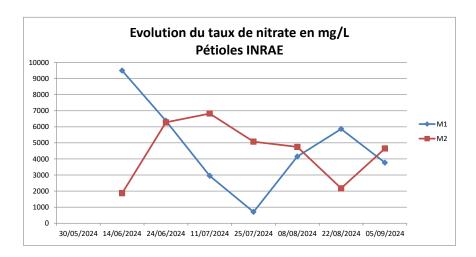

(Annexe 4 page 12)

Analyse de sol

Dans cet essai, et pour la modalité avec l'engrais organique, la teneur en NO3 reste faible au niveau des analyses des solutions nutritives. Celles-ci ont été réalisées à l'aide du Nitrachek et au laboratoire de la Chambre d'Agriculture du Loiret.


Quant aux analyses de sol, les résultats sont semblables à ceux des solutions nutritives pour les NO3. Pour les NH4, nous observons moins de différence entre les modalités.

ANALYSES DES PLANTES


Évolution des teneurs en nitrate, dans les jus pétiolaires

(Annexe 2 page 10)

À l'aide du Nitrachek

Au laboratoire INRAE

Dans cet essai, et au niveau des jus pétiolaires, le taux de nitrate est plus élevé en début de culture dans la modalité avec l'engrais organique. Puis, la tendance s'inverse jusqu'à mi-août.

Analyse statistique

L'analyse est réalisée à partir du logiciel Stat Box, traitement d'essais en agriculture, sur les données de rendement final.

Consulter l'Annexe 6 pages 14 et 15.

Dans cet essai, les hypothèses de l'analyse de variance sont respectées pour le rendement en kg/m². Le test de Newman Keuls ne montre pas de différence significative entre les modalités notamment puisque la valeur de la probabilité au niveau des facteurs est trop élevée (0.5403) et la puissance de l'essai est trop faible (8%).

IV - CONCLUSION

Dans cet essai, en ce qui concerne les résultats agronomiques, les rendements des deux modalités ne sont statistiquement pas différents.

Au niveau de l'azote, il est difficile de conclure en faveur ou non de l'engrais organique car les analyses de début de culture montrent qu'il reste des nitrates dans le sol. De plus, la minéralisation est importante.

Au niveau sanitaire, nous n'avons pas observé de différences entre les modalités testées.

PLAN D'ESSAI CONCOMBRE

		Bordure 16 plantes	Bordure 16 plantes	
		м ₁₋₄ 16	м2-4 17	
Bordure	Bordure	м ₁₋₃ 15	м2-3 18	Bordure
60 plantes	60 plantes	м ₁₋₂ 14	м2-2 19	60 plantes
		м ₁₋₁ 13	м2-1 20	
		Bordure 16 plantes	Bordure 16 plantes	

Densité 1,25 pl /m²
7 plantes par parcelle - 4 répétitions

Résultats des tests pétiolaires

Analyses des nitrates par le laboratoire de l' INRAE

AT1	30/05/2024	14/06/2024	24/06/2024	11/07/2024	25/07/2024	08/08/2024	22/08/2024	05/09/2024
		10400	7900,0	3700,0	<3	<3	9400,0	3200,0
M1	,	11200	4900,0	590,0	<3	<3	<3	<3
IVII	/	13600	4200,0	3700,0	600,0	1100,0	6800,0	5100,0
		2800	8500,0	3800,0	800,0	7200,0	1400,0	3000,0
Moyenne		9500,00	6375,00	2947,50	700,00	4150,00	5866,67	3766,67
		7200	7200,0	5500,0	4,0	3200,0	800,0	3300,0
M2	,	7	5400,0	4600,0	4500,0	3000,0	290,0	5400,0
IVIZ	/	220	106,0	8000,0	11400,0	800,0	3200,0	5600,0
		40	12400,0	9200,0	4400,0	12000,0	4400,0	4300,0
Moyenne		1866,75	6276,50	6825,00	5076,00	4750,00	2172,50	4650,00

Analyses des nitrates à l'aide du Nitrachek

AT1	30/05/2024	13/06/2024	27/06/2024	11/07/2024	25/07/2024	08/08/2024	22/08/2024	05/09/2024
		1725,60	385,60	391,60	239,00	127,00	344,40	348,80
M1	,	447,80	358,20	432,60	24,60	129,40	97,60	265,40
IVII	/	462,00	418,20	425,80	210,40	419,40	345,20	318,40
		913,60	406,00	430,20	393,20	438,20	395,60	353,40
Moyenne		887,25	392,00	420,05	216,80	278,50	295,70	321,50
		398,40	423,80	851,60	183,40	434,40	129,00	378,00
M2	,	388,20	387,00	433,80	429,00	393,80	381,20	387,00
IVIZ	/	359,40	367,40	473,00	441,80	233,20	347,00	425,00
		362,20	378,80	1257,00	439,20	347,00	364,60	394,20
Moyenne		377,05	389,25	753,85	373,35	352,10	305,45	396,05

Analyse de sol

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

DATES	MODALITES	р	Н	E	С	NH4 r	mea/l	N0 med		P2O5 m	nea/l	K20 med		CaO meq/l		Mc me	
		Α	R	Α	R	Α	R	Α	R	Α	R	Α	R	Α	R	Α	R
12/06/24	M1	8,05		0,14		1,00		8,00		62,00		320,00		188,00		73,00	
	M2	7,67		0,29		2,00		32,00		70,00		488,00		374,00		112,00	
25/06/24	M1	8,00		0,14		4,00		3,00		68,00		237,00		127,00		59,00	
20/00/21	M2	7,65		0,25		5,00		22,00		40,00		261,00		234,00		69,00	
23/07/24	M1	8,07		0,14		4,00		2,00		66,00		222,00		121,00		55,00	
20/01/24	M2	7,66		0,31		5,00		45,00		27,00		236,00		278,00		69,00	
06/08/24	M1	8,00		0,13		4,00		4,00		59,00		169,00		130,00		53,00	
00/00/21	M2	7,60		0,27		6,00		31,00		39,00		265,00		211,00		66,00	
20/08/24	M1	8,31		0,16		3,00		4,00		67,00		179,00		131,00		63,00	
20/08/24	M2	7,70		0,20		4,00		27,00		77,00		271,00		151,00		67,00	

Analyse des solutions nutritives

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

	TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES																	
		pН	EC	CI meq/l	NH4 meg/l	N03 meg/l	HCO3 meq/l	H2P04 meg/l	S04 meg/l	K meq/l	Ca meq/l	Mq meq/l	Na meq /l	Fe mg/l	Mn mg/l	Cu mg/l	Zn mg/l	B mg/l
DATE	ES																	
		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
11/06/24	M1	7,28	0,57	0,44	0,07	0,10	6,58	0,02	0,48	0,26	7,71	0,42	0,55	0,09	0,16	<0,01	<0,01	0,01
11/00/24	M2	6,93	1,59	0,39	2,24	6,70	5,91	1,51	3,80	8,43	7,39	2,52	0,47	0,70	0,57	0,04	0,24	0,17
25/06/24	M1	7,82	0,55	0,43	0,03	0,02	5,73	0,01	0,45	0,19	6,25	0,38	0,42	0,05	0,13	<0,01	<0,01	0,01
23/00/24	M2	7,31	1,66	0,41	2,42	7,42	4,90	1,51	4,23	7,87	6,25	2,72	0,45	0,58	0,54	0,03	0,17	0,18
09/07/24	M1	7,97	0,54	0,40	0,01	0,90	5,23	<0,01	0,45	0,15	6,21	0,38	0,38	0,30	0,13	<0,01	<0,01	0,01
03/07/24	M2	7,46	1,86	0,42	2,43	8,39	4,49	1,82	5,03	9,17	6,30	3,19	0,43	0,79	0,66	0,03	0,21	0,22
22/07/24	M1	7,43	0,55	0,34	0,02	0,45	5,84	0,03	0,46	0,16	5,72	0,39	0,28	0,02	0,12	<0,01	<0,01	0,01
22/01/24	M2	7,51	1,10	0,37	1,17	3,43	5,12	0,80	2,03	3,73	5,62	1,33	0,33	0,22	0,30	0,01	0,07	0,08
05/08/24	M1	7,70	0,55	0,44	0,05	0,03	5,69	0,02	0,44	0,15	5,69	0,39	0,37	0,05	0,13	<0,01	<0,01	0,01
03/00/24	M2	7,53	1,63	0,43	1,86	6,18	4,64	1,13	4,34	6,92	5,89	3,17	0,42	0,36	0,37	0,02	0,12	0,13
19/08/24	M1	7,73	0,54	0,37	<0,01	0,18	5,69	<0,01	0,44	0,16	5,84	0,40	0,28	0,07	0,10	<0,01	0,29	0,01
15/30/24	M2	7,57	1,26	0,42	1,31	4,66	5,22	0,64	1,56	4,15	6,05	1,36	0,32	0,29	0,29	<0,01	0,13	0,08
02/09/24	M1	7,73	0,56	0,47	0,11	0,29	5,93	0,03	0,47	0,19	5,56	0,38	0,41	0,05	0,12	<0,01	<0,01	0,02
02/03/24	M2	7,59	1,29	0,38	1,37	5,24	5,29	0,72	1,59	4,34	5,83	1,45	0,33	0,33	0,30	<0,01	0,08	0,09

TABLEAU D'ÉVOLUTION HEBDOMADAIRE DES TEMPÉRATURES

EN CULTURE									
Semaines	RGO		ature moyenr		Substrat				
	J/cm²/jour	Nuit	Jour	24 h					
20 (4 jours)	1097	10,5	19,6	17,4	19,7				
21	1077	Pro	Problème de sonde						
22	660		Dicine de 301		19,4				
23 (5 jours car pb sonde)	1481	14,7	23,8	20,8	20,1				
24	1139	12,8	21,5	18,6	19,0				
25	1007	18,0	23,9	22,0	20,6				
26	1541	18,7	27,9	24,9	21,9				
27	1196	16,5	23,6	21,3	20,7				
28	1060	17,0	24,4	21,9	20,5				
29	1374	18,5	27,0	24,0	21,1				
30	1061	19,0	24,8	22,7	21,5				
31	1270	21,3	28,6	25,9	22,8				
32	1399	18,2	26,5	23,3	21,8				
33	941	20,3	26,6	24,1	22,6				
34	1213	15,6	24,4	20,8	20,5				
35	1004	17,2	25,3	21,8	20,8				
36	713	17,5	23,8	21,0	20,7				
37	801	12,2	20,7	16,7	18,3				
38	718	15,2	25,0	20,2	18,7				
39 (4 jours)	475	16,4	20,3	18,4	18,9				

⁽¹⁾ relevées sur ordinateur à 1.50 m (sondes ventilées)

Analyse statistique Rendement en nombre de fruits/m²

Statbox 7.6 - Analyse de variance - 14/04/2025 à 10:05:22

Variable : RDT en Nb de fruits/m²

Histogramme des résidus :

2	102	202	302	402
1	401	301	201	101
Effectifs				
	2	2	2	2
Bornes				
	-3,88	-1,94	0,0	1,94
	à	à	à	à
	-1,94	0,0	1,94	3,88

Minimum: - 3,8800 Maximum: 3,8800 Intervalle: 1,9400

Indices de normalité (coefficients de K.PEARSON) :

Symétrie (valeur idéale théorique = 0) : Beta 1 = 0,0000 Prob. : 0,9999 Aplatissement (valeur idéale théorique = 3) : Beta 2 = 1,9655 Prob. : 0,4848

Résidus suspects (méthode de GRUBBS) :

Aucun résidu suspect

Cartographie des résidus :

	1	2
1		
2		
3		
4		

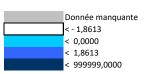
Ecart type des résidus :

Ecarts-types facteur 1 = RDT en Nb de fruits/m²

	E.T.
1 (M1)	2,9565
2 (M2)	2,9565

khi² = 0,0000 Prob. = 0,99

Ecarts-types blocs = Bloc


	E.T.
1 (B1)	5,4871
2 (B2)	0,2121
3 (B3)	1,1102
4 (B4)	4,5891

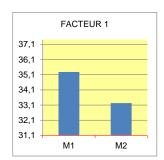
khi² = 4,7533 Prob. = 0,18906

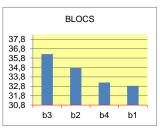
Test de Tukey:

SCE test de TUKEY = 3,3680 Prob. = 0,7404 Test non significatif

Légende :

Analyse de variance :


	S.C.E	DDL	C.M.	TEST F	PROBA
VarTOTALE	75,2788	7	10,7541		
Var.FACTEUR 1	8,4050	1	8,4050	0,4808	0,5403
Var.BLOCS	14,4274	3	4,8091	0,2751	0,8414
VAR.RESIDUELLE 1	52,4463	3	17,4821		


Indicateurs:

	Valeur
Moyenne générale	34,2575
Ecart type résiduel	4,1812
Coef. variation %	12,2051

Moyennes:

Puissance de l'essai :

Puissance facteur 1 : RDT en Nb de fruits/m²

		Risque de 1ère espèce (%)		
Ecarts	Ecarts	5	10	20
En %	V.Absolue	Puissance a priori (%)		
5	1,7100	7	13	25
10	3,4300	13	22	36
		Puissance à posteriori (%)		
Moyennes observées		8	15	27

Comparaisons de moyennes

Test de Newman-Keuls au seuil 5% :

Test de Newman-keuls non significatif

Test simultané de Bonferroni au niveau 5% :

Test de Bonferroni non significatif

Données pour des regroupements d'essais :

RDT en Nb de fruits/m²	Moyenne	Residuelle	DDL	Nb Blocs
1 (M1)	35,2825	17,4821	3	4
2 (M2)	33,2325			

Dans cet essai, les hypothèses de l'analyse de variance sont respectées pour le rendement en kg/m². Le test de Newman Keuls ne montre pas de différence significative entre les modalités notamment puisque la valeur de la probabilité au niveau des facteurs est trop élevée (0.5403) et la puissance de l'essai est trop faible (8%).

LE CLIMAT EN REGION ORLEANAISE

RELEVES CLIMATOLOGIQUES	J	F	М	Α	М	J	J	Α	S	0	N	D	TOTAL
MOIS													ANNUEL
Moyenne des Températures minima sous abris													
Moyenne station 2010/2023	1,3	0,8	2,8	4,5	8,5	12,7	14,1	13,4	10,3	7,6	4,2	2,1	
2022	1,2	1,8	3,4	5,3	11,0	14,0	14,8	15,6	11	11,0	6,1	3,0	
2023	3,4	1,0	4,6	5,2	10,0	14,7	14,5	15,2	13,7	8,8	6,2	4,9	
2024	1,6	5,5	4,7	6,3	10,3	13,1	14,9	14,6	11,8	10,4	5,5	3,7	
Moyenne des Températures maxima sous abris													
Moyenne station 2010/2023	8,3	11,0	16,1	20,8	24,0	28,3	30,4	29,8	26,6	20,2	13,2	9,7	
2022	7,8	13,6	18,1	20,0	27,0	29,7	32,5	32,9	25,3	23,0	14,6	9,0	
2023	9,1	13,3	15,9	18,8	25,1	32,2	29,4	28,1	30,6	23,0	13,9	11,3	
2024	10,1	13,2	17,3	20,0	23,0	27,5	30,1	29,9	22,9	20,0	12,7	9,1	
		Pré	écipitati	ons hau	ıteur d'e	au moy	enne en	mm					
Moyenne station 2010/2023	59	46	42	42	68	64	52	49	50	66	61	75	674
2022	32	24	14	45	25	115	10	15	92	117	52	45	586
2023	106	5	86	35	31	80	59	78	53	76	98	75	782
2024	56	59	100	49	102	75	21	30	105	94	60	37	788
Rayonnement global extérieur en joules/cm2/jour													
Moyenne station 2010/2023	275	574	1000	1530	1803	1959	1916	1667	1243	692	345	233	
2022	261	600	881	1364	1946	2007	1657	1302	837	505	240	144	
2023	163	437	620	919	1309	1642	1320	976	940	537	241	148	
2024	199	259	626	893	1005	1329	1195	1151	677	375	162	144	

Origine : station expérimentale du CVETMO

Année de mise en place : 2024

Renseignements complémentaires auprès de : Daisy HOUDMON (24_conc_fert_02 PRICE), CVETMO 196 rue des Montaudins 45560 SAINT DENIS EN VAL, tél 02-38-64-94-32, mail : cvetmo@cvetmo.com
Page 16 sur 16