

Réduire les intrants chimiques en culture de concombre pleine terre

PRICE

2024

Daisy HOUDMON (CVETMO)

I - BUT DE L'ESSAI

Développer des outils d'aide à la décision afin de réduire la dépendance aux intrants azotés dans la culture du concombre.

II - MATÉRIEL ET MÉTHODE

1. Modalités testées

Modalité 1 : 15 meq d'azote/L
Modalité 2 : 10 meg d'azote/L

• Modalité 3 : 5.5 meg d'azote/L

Modalité 4: 3 meq d'azote/L

2. <u>Dispositif expérimental</u>

Ce dispositif, en blocs, est mis en place sous tunnel, avec quatre stations de fertilisation distinctes.

- Nombre de répétitions : 3

- Nombre de modalités : 4

- Surface d'une parcelle élémentaire : 4.8 m² (surface dédiée à la récolte)
- Surface totale de l'essai : 300 m²
- Nombre de plantes par parcelle élémentaire : 14 (**6 plantes** utilisées pour l'évaluation du rendement et **8 plantes** réservées pour les analyses)

Voir le plan de l'essai en *Annexe 1* page 12.

3. Paramètres observés

- Rendements : à chaque récolte

- **Observations régulières :** suivi visuel des plantes, des fruits, des maladies et des ravageurs.

- Analyses de sol :

- * analyse de sol générale avant la plantation
- * analyse du reliquat azoté (à raison d'une fois par mois et par modalité, soit quatre échantillons).

Les analyses sont réalisées par le laboratoire de la Chambre d'Agriculture du Loiret.

- Analyses de la solution nutritive : à raison d'une fois par mois et par modalité, soit quatre échantillons.

Les analyses sont réalisées par le laboratoire de la Chambre d'Agriculture du Loiret.

- Contrôle de la solution nutritive (à l'aide du Nitracheck) : vérification hebdomadaire aux goutteurs, par modalité.
- Analyse des jus pétiolaires (nitrate) : huit dates de prélèvement sur différents pétioles : trois plantes prélevées par modalité puis envois à l'INRAE pour analyse.
- Mesures qualité jus pétiolaire :

* **Réfractomètre** : mesure du taux de Brix

* pHmètre stylo : mesure du pH

- Mesures de l'état azoté foliaire :
- * Utilisation des appareils **Atleaf** et **SPAD** : les mesures sont réalisées aux huit mêmes que les jus pétiolaires, sur trois plantes par modalité avant destruction.
- **Prélèvements végétaux pour analyse d'azote total** : les analyses sont réalisées à huit dates prédéfinies.

Douze plantes sont prélevées à chaque date (1 plante par répétition, soit trois par modalité)

- Étapes :
 - Pesée de la matière fraîche individuelle
 - Passage en étuve
 - o Pesée de la matière sèche individuelle
 - o Envoi à l'**INRAE** pour analyse de l'azote total dans la plante

4. Conduite culturale

LIEU DE RÉALISATION

Station Expérimentale du Domaine de Melleray 45560 SAINT DENIS EN VAL - TUNNEL n°2

CARACTÉRISTIQUES DU TUNNEL

Charpente métallique tubulaire de fabrication SER

Largeur: 9,10 mLongueur: 33 m

- Surface: 300 m²

- Film de couverture : HYTITHERMIC 4 saisons (fourni par SARL BV DIS), bâchage le 15 décembre 2017

SEMIS

Dans cet essai, nous avons choisi d'utiliser des plants greffés. Les semis ont été effectués à l'EARL Clos la Grange le Roi - 45570 SAINT PRYVÉ SAINT MESMIN

Le 09 avril 2024 : semis de ROADIE (Rijk Zwaan)

■ Le 11 avril 2024 : semis du porte greffe

■ Le 19 avril 2024 : greffage

PRÉPARATION DU SOL

* Précédent cultural : laitues pommées et laitues batavia

* Désinfection du sol : néant

PLANTATION

■ Le 16 mai 2024 en culture en sol

STADE DE PLANTATION

VARIÉTÉ	HAUTEUR PLANTE (cm)	NOMBRE DE FEUILLES	COULEUR	PORT	HOMOGÉNÉITÉ
ROADIE (Rijk Zwaan)	39/41	5.5/6.5	Vert	Trapu	Homogène

DENSITÉ DE PLANTATION

1.25 plantes/m², intervalle sur le rang 0.50 m

NUTRITION MINÉRALE DES PLANTES

L'équilibre des solutions est calculé à partir des résultats d'analyse d'eau du forage. Le tunnel est divisé en deux parties avec chacune leur station de fertilisation distincte.

L'apport d'engrais est réalisé sous forme d'irrigation fertilisante avec l'utilisation d'une pompe Dosatron au taux d'injection de 0.5%.

^{*} Apport avant plantation : pas de fumure minérale

Tableau des résultats d'analyses d'eau de fertirrigation

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

	MODALITES			CI	NH4	N03	HCO3	H2P04	S04	К	Ca	Mq	Na	Fe	Mn	Cu	Zn	В
DATES	MODALITEO	pH A	EC A	meq/l	meq/l A	meq/l A	meq/l	meq/l A	meq/l	meq/l A	meq/l A	meq/l	meq /I	mq/l A	mq/l A	mq/l A	mq/l A	mq/l A
	M1	7,06	1,25	0,36	0,62	5,97	6,24	0,39	1,38	5,48	8,49	1,93	0,41	0,16	0,14	<0,01	0,02	0,03
11/06/24	M2	7,21	1,11	0,35	0,68	5,21	6,42	<0,01	1,14	3,79	8,85	1,49	0,38	0,09	0,13	<0,01	<0,01	0,01
11/00/24	M3	7,05	0,83	0,34	0,09	3,04	6,13	0,55	0,97	1,86	8,48	1,54	0,39	0,13	0,15	<0,01	0,02	0,02
	M4	7,11	0,92	0,35	0,42	3,81	6,19	0,38	1,12	2,32	8,16	1,61	0,38	0,11	0,12	<0,01	<0,01	0,02
	M1	7,42	0,73	0,37	0,13	2,65	4,99	0,86	0,91	1,35	6,71	0,77	0,38	0,27	0,24	<0,01	0,03	0,06
25/06/24	M2	7,64	1,15	0,37	0,60	5,59	4,99	0,43	1,30	2,53	9,48	1,19	0,38	0,13	0,19	<0,01	0,01	0,03
20/00/24	МЗ	7,70	0,92	0,37	0,40	3,09	5,62	0,07	1,91	2,17	6,60	1,86	0,36	0,10	0,15	<0,01	<0,01	0,01
	M4	7,10	0,59	0,34	<0,01	0,03	3,45	2,77	0,57	1,62	6,27	0,51	0,41	0,35	0,29	0,02	0,05	0,08
	M1	7,51	0,60	0,35	0,02	1,33	4,47	1,21	0,59	0,83	6,95	0,49	0,37	0,31	0,29	0,02	0,04	0,07
09/07/24	M2	8,06	1,26	0,38	0,70	6,29	5,12	0,01	2,04	4,07	8,28	1,92	0,35	0,37	0,07	<0,01	<0,01	0,01
	М3	7,28	0,62	0,32	0,03	1,14	3,12	2,73	0,81	1,76	6,70	0,74	0,39	0,29	0,26	0,02	0,04	0,08
	M4	7,29	0,61	0,33	<0,01	1,20	3,44	2,36	0,97	1,70	6,61	0,85	0,38	0,24	0,21	0,01	0,03	0,07
	M1	6,56	2,32	0,43	1,72	15,74	2,58	2,07	2,55	9,87	9,00	3,24	0,37	0,58	0,46	0,05	0,08	0,17
22/07/24	M2	6,97	1,25	0,37	0,78	6,00	3,09	1,92	1,79	5,23	5,65	1,80	0,37	0,92	0,38	0,04	0,06	0,14
	МЗ	6,98	0,96	0,35	0,38	2,75	3,65	3,06	2,20	3,43	6,29	2,00	0,33	0,23	0,32	0,02	0,04	0,09
	M4	6,97	0,90	0,35	<0,01	2,08	3,87	2,97	2,39	3,13	6,71	2,14	0,36	0,21	0,30	0,02	0,03	0,09
	M1	7,38	1,92	0,40	1,35	11,16	3,86	1,14	1,68	5,43	11,12	2,68	0,33	0,26	0,23	<0,01	0,01	0,05
05/08/24	M2	7,68	2,08	0,42	2,04	13,80	3,80	0,82	1,80	7,06	9,94	3,55	0,34	0,12	0,08	<0,01	<0,01	0,05
	МЗ	7,03	1,32	0,38	0,93	5,14	2,99	3,07	3,89	4,65	6,60	4,59	0,40	0,83	0,59	0,07	0,17	0,23
	M4	7,07	1,04	0,37	0,08	3,49	3,02	2,92	2,80	3,13	7,07	3,53	0,40	0,83	0,60	0,07	0,16	0,22
	M1	7,23	1,06	0,37	0,57	3,97	4,61	1,02	1,20	2,62	7,66	0,90	0,31	0,33	0,19	<0,01	0,09	0,05
19/08/24	M2	7,24	1,39	0,39	0,81	6,82	4,62	1,02	1,83	4,05	8,13	2,27	0,31	0,41	0,25	0,01	0,07	0,06
	МЗ	6,91	0,96	0,37	0,61	2,52	3,44	3,14	1,30	3,39	6,83	0,99	0,40	0,93	0,67	0,07	0,22	0,23
	M4	6,95	0,98	0,37	0,66	2,53	3,72	3,11	1,55	3,25	6,31	1,29	0,38	0,90	0,59	0,08	0,19	0,23
	M1	7,38	2,33	0,39	1,66	17,08	3,69	1,00	1,42	7,14	11,36	3,25	0,33	0,35	0,24	0,02	0,03	0,09
02/09/24	M2	7,26	1,29	0,38	0,63	6,17	4,88	0,90	1,90	3,82	7,12	1,81	0,32	0,32	0,23	0,02	0,03	0,08
	МЗ	7,27	0,90	0,36	0,54	2,65	2,98	2,83	1,21	2,96	6,20	0,93	0,34	0,49	0,23	0,04	0,09	0,13
	M4	7,11	0,96	0,37	0,63	2,87	3,33	2,84	1,49	3,06	6,33	1,27	0,35	0,55	0,33	0,04	0,09	0,13

En cours de culture, une analyse des éléments fertilisants, directement assimilables et autres éléments nutritifs dans le sol, est effectuée toutes les semaines aux mêmes rythmes que les tests pétiolaires.

Les prélèvements de sol sont réalisés au niveau des bulbes humides au même rythme que les autres analyses.

Les résultats de ces analyses se trouvent en *Annexe* 3 page 14.

CONDUITE ET GESTION DES IRRIGATIONS

→ Centralisées par ordinateur

<u>Mode d'arrosage</u>: irrigation fertilisante localisée par gaines (1l/h).

Conduite ETP avec évolution des coefficients plantes

A la plantation : formation du bulbe	
Du 22 au 23 mai 2024	0,4
Du 24 au 27 mai 2024	0,6
Du 28 mai au 02 juin 2024	0,8
Du 03 juin à la fin de la culture	

CONDUITE DE LA PLANTE

Taille parapluie, palissage droit sur un fil avec tête retombante au centre de la chapelle sur un second fil.

Premier fruit gardé à la sixième feuille, puis suppression d'un fruit sur deux jusqu'au fil.

Sélection de trois axillaires (un en inter fil, deux au niveau du second fil et positionnés de part et d'autre de la tête).

Arrêt de la tige principale à six feuilles après le second fil (l'objectif est de favoriser la croissance et le développement des axillaires).

Arrêt des axillaires à un mètre du sol.

En cours de culture : taille de rajeunissement et effeuillage sur la partie médiane.

CONDUITE MICROCLIMATIQUE

Conduite de la culture sans chauffage.

Refroidissement de l'abri par ouverture latérale des laizes et des portes.

Conditions microclimatiques de l'essai

Les mesures climatiques sont suivies à l'aide d'un logiciel (Aria). La sonde est placée au milieu du tunnel dans le rang central.

Les résultats des mesures sont consignés dans le tableau en *Annexe 5* page 16.

Conditions climatiques extérieures

(cf Annexe 7 page 19)

OBSERVATIONS ET CONDITIONS SANITAIRES

Mesures prophylactiques

Lutte anti-insectes et vide sanitaire sur la serre d'élevage.

Observations et conduite sanitaire en cours d'élevage des plants

Pose de panneaux chromo-attractifs pour détection et piégeage des insectes.

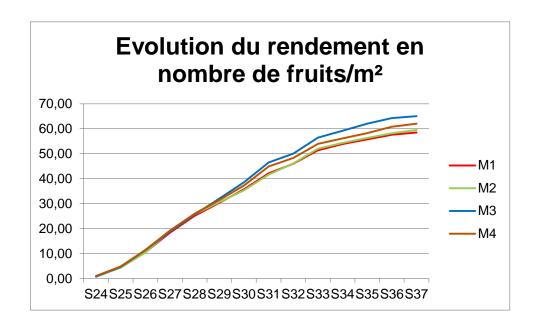
Aucune maladie n'a été détectée.

Observations et conduite sanitaire en cours de culture

→ Protection biologique intégrée

ARRACHAGE DE LA CULTURE

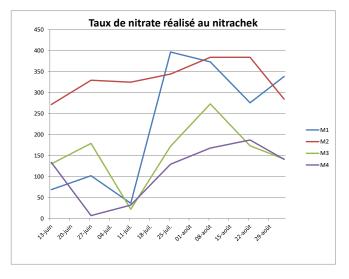
■ Le 16 septembre 2024

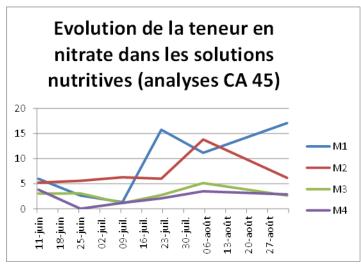

III - RÉSULTATS ET DISCUSSION

RENDEMENT

Période de récolte : du 14 juin au 13 septembre 2024

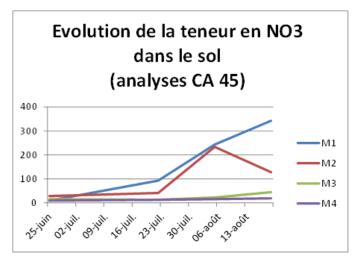
TABLEAU DE RENDEMENT COMMERCIAL (catégorie 0 et 1) HEBDOMADAIRE ET MENSUEL et POIDS MOYEN DES FRUITS

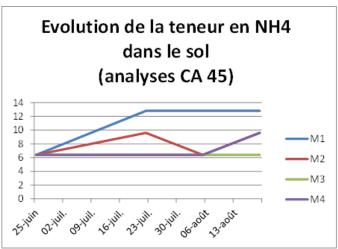

			M1				M2				M3		M4			
N° semaine	fruits/ m²	kg/m²	pds/frt	% 2ème choix	fruits/m²	kg/m²	pds/frt	% 2ème choix	fruits/m²	kg/m²	pds/frt	% 2ème choix	fruits/m²	kg/m²	pds/frt	% 2ème choix
S24	0,9	0,39	432	0,0	0,7	0,33	476	0	0,8	0,38	501	0,0	1,0	0,48	489	0,0
S25	3,5	1,78	503	1,9	3,7	1,74	472	7	3,9	1,98	508	1,8	3,9	1,98	509	5,1
S26	6,0	3,24	536	6,5	6,0	3,20	530	5	6,7	3,39	504	7,6	6,6	3,58	543	3,1
JUIN	10,5	5,4	516	2,8	10,4	5,27	506	12,5	11,4	5,75	505	9,4	11,5	6,04	527	8,1
S27	7,9	4,62	584	3,4	8,6	4,94	573	2	7,4	4,56	619	7,0	7,8	4,56	586	6,7
S28	6,7	3,92	582	4,0	6,7	3,87	581	9	6,9	3,79	551	5,7	6,7	3,83	568	5,8
S29	5,2	2,55	490	3,8	4,9	2,52	518	3	6,4	2,95	462	5,2	5,4	2,64	487	2,5
S30	5,3	2,87	536	1,3	4,8	2,58	538	3	6,5	3,46	531	4,1	5,8	3,10	532	3,4
JUILLET	25,2	13,96	554	3,1	24,9	13,90	558	3,9	27,2	14,76	544	5,5	25,8	14,13	549	4,6
S31	6,5	3,12	484	2,1	6,3	3,05	489	4	7,9	3,80	479	0,9	7,6	3,68	482	2,7
S32	3,8	1,71	446	1,9	4,5	2,03	452	0	3,5	1,65	465	1,9	3,4	1,51	445	3,9
S33	5,4	2,59	482	26,3	6,0	2,96	497	20	6,5	3,16	489	19,8	5,7	2,72	478	22,6
S34	2,5	1,25	499	20,9	2,3	1,11	488	31	2,7	1,33	488	30,2	2,2	1,12	522	24,4
S35	1,9	0,92	481	10,3	2,0	0,95	481	23	2,8	1,34	476	14,3	2,2	1,01	470	0,0
AOUT	20,1	9,58	478	12,3	21,0	10,11	482	15,7	23,4	11,26	480	13,4	21,0	10,05	478	10,7
S36	1,8	0,90	492	3,8	1,9	0,85	451	14	2,3	1,15	507	6,5	2,6	1,20	465	0,0
S37	0,9	0,37	420	0,0	1,3	0,63	471	0	0,8	0,37	472	0,0	1,2	0,48	409	10,5
SEPTEMBRE	2,7	1,28	469	3,8	3,2	1,47	459	14,3	3,0	1,52	498	3,2	3,8	1,68	448	5,3
CUMUL	58,48	30,23	517	6,85	59,51	30,76	517	8,14	65,04	33,30	512	8,05	62,01	31,90	514	6,88



ANALYSES DE SOL ET VÉGETALES

Analyse des solutions nutritives


(Annexe 4 page 15)



Analyse de sol

(Annexe 3 page 14)

Dans cet essai, la teneur en nitrates mesurée dans les solutions nutritives est restée relativement faible en début de culture, à l'exception de la modalité M2.

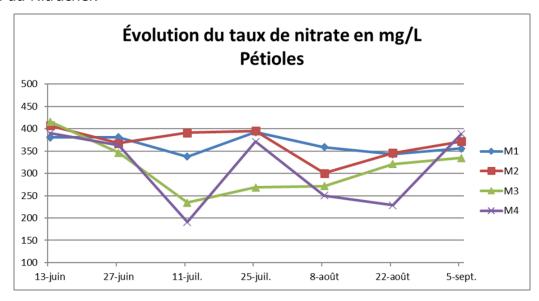
Cette situation s'explique par des difficultés rencontrées lors du pompage avec les Dosatrons, liés à un dysfonctionnement dans l'aspiration des deux bacs d'engrais.

Après plusieurs essais visant à améliorer les apports, nous avons pris la décision de doubler le nombre de Dosatrons pour cet essai.

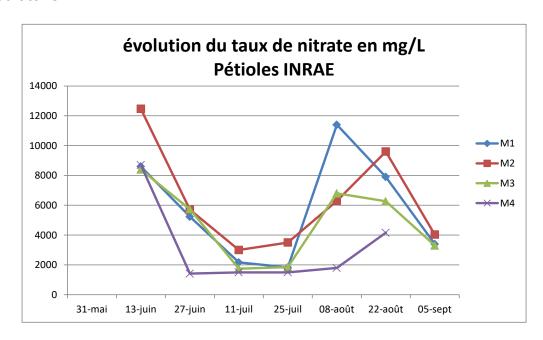
Suite à cette modification, une augmentation des teneurs en NO₃ a été observée dans les solutions nutritives.

Les mesures ont été réalisées à l'aide du Nitrachek ainsi qu'au laboratoire de la Chambre d'Agriculture du Loiret.

Concernant les analyses de sol, les résultats pour les nitrates sont globalement similaires à ceux observés dans les solutions nutritives. En revanche, pour les NH4, des taux plus élevés ont été enregistrés dans les modalités M1 et M2.


Les modalités M3 et M4 présentent des teneurs proches jusqu'au 6 août.

ANALYSES DES PLANTES

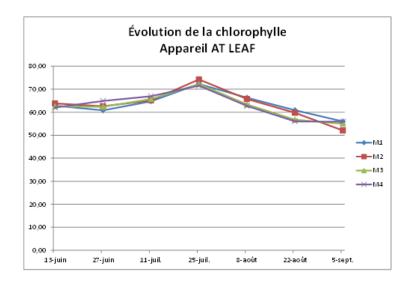

Évolution des teneurs en nitrate, dans les jus pétiolaires

(Annexe 2 page 13)

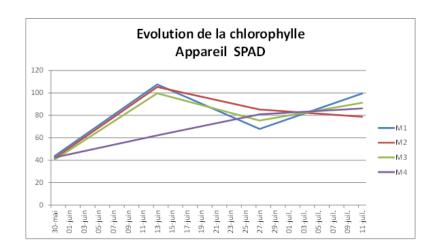
À l'aide du Nitrachek

Au laboratoire INRAE

Dans cet essai, au niveau des jus pétiolaires, les taux de nitrates diffèrent entre les analyses réalisées avec le Nitrachek et celles obtenues par le laboratoire de l'INRAE. Avec les résultats issus du Nitrachek, aucune différence n'est observée en début de culture.


Au cours du développement de la culture, les écarts s'accentuent, mais ceux-ci ne sont statistiquement pas significatifs.

Pour les résultats du laboratoire, une augmentation du taux de nitrates dans les pétioles est observée à partir du 25 juillet, probablement en lien avec les modifications apportées au niveau des Dosatrons.


Toutefois, ces différences ne sont pas statistiquement significatives.

Évolution de la chlorophylle

Avec l'appareil AT LEAF

Avec l'appareil SPAD

Concernant les mesures de chlorophylle, les résultats obtenus avec l'AT LEAF montrent peu de différences entre les modalités, sans différences statistiquement significatives.

Avec le SPAD, les mesures sont arrêtées au 11 juillet en raison d'une panne de l'appareil. Comme pour l'AT LEAF, aucune différence significative n'a été observée entre les modalités.

Analyse statistique

L'analyse est réalisée à partir du logiciel Stat Box, dédié au traitement des essais en agriculture, sur les données de rendement final. (Consulter *l'Annexe 6* pages 17 et 18.)

Dans cet essai, les hypothèses de l'analyse de variance sont respectées pour le rendement exprimé en kg/m². Le test de Newman-Keuls ne met en évidence aucune différence significative entre les modalités, notamment en raison d'une valeur de probabilité élevée pour les facteurs étudiés (0.3829) et d'une puissance statistique insuffisante (19 %).

Concernant les tests de chlorophylle, réalisés avec les deux appareils à toutes les dates, le test de Newman-Keuls ne révèle pas de différence significative entre les modalités.

De même, pour les taux de nitrates dans les jus pétiolaires, qu'ils soient mesurés par Nitrachek ou par analyses effectuées au laboratoire de l'INRAE, aucune différence significative entre les modalités n'est observée, quelle que soit la date.

Enfin, en ce qui concerne les teneurs en azote dans les plantes, les tests de Newman-Keuls, réalisés à toutes les dates, ne montrent pas non plus de différence significative entre les modalités.

IV - CONCLUSION

Dans cet essai, en ce qui concerne les résultats agronomiques, les rendements des deux modalités ne présentent pas de différence statistiquement significative.

Aucune différence significative n'a été observée non plus pour les tests de chlorophylle, les teneurs en nitrates dans les jus pétiolaires, ni pour les concentrations en azote dans les plantes. Cela est probablement lié à la présence résiduelle de nitrates dans le sol en début de culture, ainsi qu'à une minéralisation importante de l'azote au cours de la saison culturale.

Sur le plan sanitaire, aucune différence notable n'a été constatée entre les modalités testées.

PLAN D'ESSAI CONCOMBRE

	Bordure 2 plantes	Bordure 2 plantes	Bordure 2 plantes	
	M4-3	M3-3	M1-3	
	м4-3 4	мз-з 5	м ₁₋₃ 12	
	M3-2	M4-2	M2-3	
Bordure 60 plantes	мз-2 3	м4-2 6	м2-3 11	Bordure 60 plantes
oo plantes	M2-2	M1-2	M4-1	oo plantes
	M2-2 2	м ₁₋₂	M4-1 10	
	M1-1	M2-1	M3-1	
	м 1-1 1	M2-1	мз-1 9	
	Bordure 2 plantes	Bordure 2 plantes	Bordure 2 plantes	

Densité 1,25 pl /m²

14 plantes par parcelle - 3 répétitions 6 plantes pour les récoltes et 8 plantes pour les prélèvements

Résultats des tests pétiolaires

Analyses des nitrates par le laboratoire de l' INRAE

Taux de nitrate en mg/L

		30/05/2024	13/06/2024	27/06/2024	11/07/2024	25/07/2024	08/08/2024	22/08/2024	05/09/2024
	P1		600,0	4300,0	110,0	2100,0	10400,0	4600,0	
M1	P7		12400,0	4100,0	4600,0	4,0	14200,0	6900,0	4500,0
	P12		12800,0	7300,0	1800,0	3400,0	9600,0	12200,0	2300,0
M1	moyenne M1		8600,0	5233,3	2170,0	1834,7	11400,0	7900,0	3400,0
	P2		16000,0	7400,0	3900,0	3000,0	3800,0	12000,0	4000,0
M2	P8		15400,0	3900,0	1800,0	100,0	<3	10600,0	3500,0
	P11	ants	6000,0	5800,0	3300,0	7400,0	8800,0	6200,0	4600,0
M2	moyenne M2	Manqui	12466,7	5700,0	3000,0	3500,0	6300,0	9600,0	4033,3
	P3	Лаг	12000,0	4300,0	<3	6,0	<3	1400,0	2100,0
M3	P5	_	6000,0	7100,0	1900,0		3600,0	9400,0	2300,0
	P9		7200,0	5800,0	1600,0	3700,0	10000,0	8000,0	5500,0
M3	moyenne M3		8400,0	5733,3	1750,0	1853,0	6800,0	6266,7	3300,0
	P4		13000,0	2900,0	2200,0	<3	4,0	480,0	
M4	P6		4400,0	45,0	<3	<3	3000,0	10800,0	
	P10			1300,0	800,0	1500,0	2400,0	1200,0	
M4	moyenne M4		8700,0	1415,0	1500,0	1500,0	1801,3	4160,0	

Analyses des nitrates à l'aide du Nitrachek

Taux de nitrate en mg/L

		30/05/2024	13/06/2024	27/06/2024	11/07/2024	25/07/2024	08/08/2024	22/08/2024	05/09/2024
	P1	2776,8	359,2	384,6	259,4	452,0	365,6	333,6	
M1	P7	#DIV/0!	348,0	372,4	417,2	276,6	322,2	334,4	350,4
	P12	#DIV/0!	433,4	385,4	335,2	447,6	388,8	359,8	360,8
Moy M1			380,2	380,8	337,3	392,1	358,9	342,6	355,6
	P2	4043,0	419,6	377,2	432,8	408,0	388,6	328,6	345,2
M2	P8	#DIV/0!	421,2	380,4	349,2	341,0	435,8	367,4	388,0
	P11	#DIV/0!	380,6	345,0	391,0	436,4	76,4	341,0	381,4
Moy M2			407,1	367,5	391,0	395,1	300,3	345,7	371,5
	Р3	3918,0	433,4	344,0	39,4	74,0	60,0	211,8	319,2
M3	P5	#DIV/0!	380,0	347,4	340,6	290,4	337,8	338,0	350,4
	P9	#DIV/0!	433,4	347,8	323,4	441,2	416,4	413,8	
Moy M3			415,6	346,4	234,5	268,5	271,4	321,2	334,8
	P4	4262,0	380,6	382,0	323,0	307,6	125,4	125,6	
M4	P6	#DIV/0!	408,8	381,6	60,8	368,4	262,8	316,4	388,0
	P10	#DIV/0!	380,6	327,4	188,8	436,4	363,0	244,2	
Moy M4			390,0	363,7	190,9	370,8	250,4	228,7	388,0

Analyse de sol

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

DATES	MODALITES	р	Н	E	С	NH4	meq/l	N0 med		P2O5 meq/l		K20 med		CaO meq/l		MqO meq/l	
		Α	R	Α	R	Α	R	Α	R	Α	R	Α	R	Α	R	Α	R
	M1	7,99		0,09		2,00		3,00		59,00		147,00		171,00		83,00	
25/06/24	M2	7,87		0,13		2,00		9,00		50,00		107,00		201,00		75,00	
25/00/24	M3	7,86		0,16		2,00		5,00		57,00		155,00		229,00		92,00	
	M4	7,94		0,15		2,00		3,00		67,00		166,00		209,00		92,00	
	M1	7,65		0,26		4,00		29,00		57,00		193,00		247,00		78,00	
22/07/24	M2	7,07		0,13		3,00		13,00		47,00		127,00		164,00		69,00	
22,0172	МЗ	7,95		0,11		2,00		4,00		85,00		119,00		148,00		71,00	
	M4	8,21		0,10		2,00		4,00		75,00		104,00		162,00		73,00	
	M1	7,85		0,21		4,00		76,00		69,00		209,00		202,00		78,00	
05/08/24	M2	8,10		0,26		2,00		73,00		36,00		135,00		269,00		68,00	
	МЗ	7,73		0,22		2,00		7,00		40,00		123,00		247,00		83,00	
	M4	7,97		0,13		2,00		5,00		52,00		120,00		185,00		83,00	
	M1	7,47		0,33		4,00		107,00		64,00		207,00		298,00		107,00	
19/08/24	M2	8,16		0,19		3,00		40,00		76,00		203,00		193,00		83,00	
	МЗ	7,69		0,15		2,00		14,00		166,00		172,00		153,00		88,00	
	M4	7,64		0,13		3,00		6,00		189,00		186,00		145,00		90,00	

Analyse des solutions nutritives

TABLEAU RESULTATS DES ANALYSES BI-MENSUELLES

DATES	MODALITES	рН	EC	CI meq/I	NH4 meg/l	N03 meg/l	HCO3 meg/l	H2P04 meq/l	S04 meg/l	K meg/l	Ca meg/l	Mq meq/l	Na meq/l	Fe mg/l	Mn mg/l	Cu mg/l	Zn mg/l	B mg/l
		A	A	A	Α	A	A	A	A	Α	A	A	A	A	A	A	A	Α
	M1	7,06	1,25	0,36	0,62	5,97	6,24	0,39	1,38	5,48	8,49	1,93	0,41	0,16	0,14	<0,01	0,02	0,03
11/06/24	M2	7,21	1,11	0,35	0,68	5,21	6,42	<0,01	1,14	3,79	8,85	1,49	0,38	0,09	0,13	<0,01	<0,01	0,01
	M3	7,05	0,83	0,34	0,09	3,04	6,13	0,55	0,97	1,86	8,48	1,54	0,39	0,13	0,15	<0,01	0,02	0,02
	M4	7,11	0,92	0,35	0,42	3,81	6,19	0,38	1,12	2,32	8,16	1,61	0,38	0,11	0,12	<0,01	<0,01	0,02
	M1	7,42	0,73	0,37	0,13	2,65	4,99	0,86	0,91	1,35	6,71	0,77	0,38	0,27	0,24	<0,01	0,03	0,06
	M2	7,64	1,15	0,37	0,60	5,59	4,99	0,43	1,30	2,53	9,48	1,19	0,38	0,13	0,19	<0,01	0,01	0,03
25/06/24	МЗ	7,70	0,92	0,37	0,40	3,09	5,62	0,07	1,91	2,17	6,60	1,86	0,36	0,10	0,15	<0,01	<0,01	0,01
	M4	7,10	0,59	0,34	<0,01	0,03	3,45	2,77	0,57	1,62	6,27	0,51	0,41	0,35	0,29	0,02	0,05	0,08
	M1	7,51	0,60	0,35	0,02	1,33	4,47	1,21	0,59	0,83	6,95	0,49	0,37	0,31	0,29	0,02	0,04	0,07
	M2	8,06	1,26	0,38	0,70	6,29	5,12	0,01	2,04	4,07	8,28	1,92	0,35	0,37	0,07	<0,01	<0,01	0,01
09/07/24	МЗ	7,28	0,62	0,32	0,03	1,14	3,12	2,73	0,81	1,76	6,70	0,74	0,39	0,29	0,26	0,02	0,04	0,08
	M4	7,29	0,61	0,33	<0,01	1,20	3,44	2,36	0,97	1,70	6,61	0,85	0,38	0,24	0,21	0,01	0,03	0,07
	M1	6,56	2,32	0,43	1,72	15,74	2,58	2,07	2,55	9,87	9,00	3,24	0,37	0,58	0,46	0,05	0,08	0,17
	M2	6,97	1,25	0,37	0,78	6,00	3,09	1,92	1,79	5,23	5,65	1,80	0,37	0,92	0,38	0,04	0,06	0,14
22/07/24	МЗ	6,98	0,96	0,35	0,38	2,75	3,65	3,06	2,20	3,43	6,29	2,00	0,33	0,23	0,32	0,02	0,04	0,09
	M4	6,97	0,90	0,35	<0,01	2,08	3,87	2,97	2,39	3,13	6,71	2,14	0,36	0,21	0,30	0,02	0,03	0,09
	M1	7,38	1,92	0,40	1,35	11,16	3,86	1,14	1,68	5,43	11,12	2,68	0,33	0,26	0,23	<0,01	0,01	0,05
	M2	7,68	2,08	0,42	2,04	13,80	3,80	0,82	1,80	7,06	9,94	3,55	0,34	0,12	0,08	<0,01	<0,01	0,05
05/08/24	МЗ	7,03	1,32	0,38	0,93	5,14	2,99	3,07	3,89	4,65	6,60	4,59	0,40	0,83	0,59	0,07	0,17	0,23
	M4	7,07	1,04	0,37	0,08	3,49	3,02	2,92	2,80	3,13	7,07	3,53	0,40	0,83	0,60	0,07	0,16	0,22
	M1	7,23	1,06	0,37	0,57	3,97	4,61	1,02	1,20	2,62	7,66	0,90	0,31	0,33	0,19	<0,01	0,09	0,05
19/08/24	M2	7,24	1,39	0,39	0,81	6,82	4,62	1,02	1,83	4,05	8,13	2,27	0,31	0,41	0,25	0,01	0,07	0,06
19/08/24	МЗ	6,91	0,96	0,37	0,61	2,52	3,44	3,14	1,30	3,39	6,83	0,99	0,40	0,93	0,67	0,07	0,22	0,23
	M4	6,95	0,98	0,37	0,66	2,53	3,72	3,11	1,55	3,25	6,31	1,29	0,38	0,90	0,59	0,08	0,19	0,23
	M1	7,38	2,33	0,39	1,66	17,08	3,69	1,00	1,42	7,14	11,36	3,25	0,33	0,35	0,24	0,02	0,03	0,09
	M2	7,26	1,29	0,38	0,63	6,17	4,88	0,90	1,90	3,82	7,12	1,81	0,32	0,32	0,23	0,02	0,03	0,08
02/09/24	МЗ	7,27	0,90	0,36	0,54	2,65	2,98	2,83	1,21	2,96	6,20	0,93	0,34	0,49	0,23	0,04	0,09	0,13
	M4	7,11	0,96	0,37	0,63	2,87	3,33	2,84	1,49	3,06	6,33	1,27	0,35	0,55	0,33	0,04	0,09	0,13

TABLEAU D'ÉVOLUTION HEBDOMADAIRE DES TEMPÉRATURES

EN CULTURE											
Semaines	RGO		ature moyenr		Substrat						
	J/cm²/jour	Nuit	Jour	24 h	- Caroti at						
20 (3 jours)	1097	12,6	21,5	18,2	20,8						
21	1077	Dro	oblème de soi	nde	21,4						
22	660	110	bienie de soi	iue	19,3						
23 (5 jours car pb sonde)	1481	14,3	23,5	20,4	20,2						
24	1139	12,0	21,1	18,1	18,6						
25	1007	17,3	23,1	21,2	20,7						
26	1541	17,9	27,3	24,2	22,8						
27	1196	15,7	23,4	20,8	6 1,7						
28	1060	16,0	24,1	21,4	21,7						
29	1374	17,6	26,9	23,7	23,3						
30	1061	18,2	24,4	22,2	23,4						
31	1270	20,7	28,6	25,7	25,7						
32	1399	17,5	26,8	23,2	23,9						
33	941	19,6	26,7	23,8	24,1						
34	1213	14,7	24,2	20,2	22,2						
35	1004	16,4	24,9	21,3	23,9						
36	713	16,7	23,2	20,3	22,8						
37	801	11,3	19,7	15,8	19,5						
38	718	14,5	24,1	19,5	20,7						
39 (4 jours)	475	15,6	20,1	17,9	20,0						

⁽¹⁾ relevées sur ordinateur à 1.50 m (sondes ventilées)

Analyse statistique Rendement en nombre de fruits/m²

Statbox 7.6 - Analyse de variance - 14/04/2025 à 10:30:12

Variable : RDT en Nb de fruits/m²

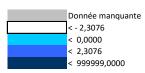
Histogramme des résidus :

_				
6		202		
5		403		
4		203		
3		301		101
2	303	103		201
1	102	302	402	401
Effectifs				
	2	6	1	3
Bornes				
	-5,04	-2,22	0,59	3,4
	à	à	à	à
	-2,22	0,59	3,4	6,21

Minimum: -5,0358 Maximum: 6,2117 Intervalle: 2,8119

Indices de normalité (coefficients de K.PEARSON) :

Symétrie (valeur idéale théorique = 0) : Beta 1 = 0,1898 Prob. : 0,4942 Aplatissement (valeur idéale théorique = 3) : Beta 2 = 2,2440 Prob. : 0,5395


Résidus suspects (méthode de GRUBBS) :

Aucun résidu suspect

Cartographie des résidus :

	1	2	3
1			
2			
3			
4			

Légende :

Ecart type des résidus :

Ecarts-types facteur 1 = RDT en Nb de fruits/m²

	E.T.
1 (M1)	3,5388
2 (M2)	1,2639
3 (M3)	4,0684
4 (M4)	5,7152

khi² = 2,9129 Prob. = 0,40662

Ecarts-types blocs = Bloc

	E.T.
1 (B1)	3,8245
2 (B2)	2,8426
3 (B3)	4,4177

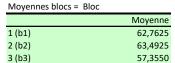
khi² = 0,4953 Prob. = 0,78398

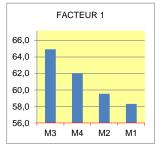
Test de Tukey :

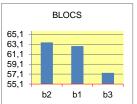
SCE test de TUKEY = 1,7079 Prob. = 0,7982 Test non significatif

Analyse de variance :

	S.C.E	DDL	C.M.	TEST F	PROBA
VarTOTALE	293,5257	11	26,6842		
Var.FACTEUR 1	76,9309	3	25,6436	1,2147	0,3829
Var.BLOCS	89,9238	2	44,9619	2,1297	0,1996
VAR.RESIDUELLE 1	126,6710	6	21,1118		


Indicateurs :


	Valeur
Moyenne générale	61,2033
Ecart type résiduel	4,5948
Coef. variation %	7,5074


Moyennes:

Moyennes facteur 1 = RDT en Nb de fruits/m²

	Moyenne
1 (M1)	58,3200
2 (M2)	59,5433
3 (M3)	64,9333
4 (M4)	62,0167

Puissance de l'essai :

Puissance facteur 1 : RDT en Nb de fruits/m²

		Risque de 1ère espèce (%)		
Ecarts	Ecarts	5	10	20
En %	V.Absolue	Puissance a priori (%)		
5	3,0600	7	14	26
10	6,1200	15	26	41
		Puissance à posteriori (%)		
Moyennes observée	S	19	31	56

Comparaisons de moyennes

Test de Newman-Keuls au seuil 5%:

Test de Newman-keuls non significatif

Test simultané de Bonferroni au niveau 5% :

Test de Bonferroni non significatif

Données pour des regroupements d'essais :

RDT en Nb de fruits/m²	Moyenne	Residuelle	DDL	Nb Blocs	Ī
1 (M1)	58,3200	21,1118		6 3	3
2 (M2)	59,5433				
3 (M3)	64,9333				
4 (M4)	62.0167				

Dans cet essai, les hypothèses de l'analyse de variance sont respectées pour le rendement en kg/m². Le test de Newman Keuls ne montre pas de différence significative entre les modalités notamment puisque la valeur de la probabilité au niveau des facteurs est trop élevée (0.3829) et la puissance de l'essai est trop faible (19%).

LE CLIMAT EN REGION ORLEANAISE

RELEVES CLIMATOLOGIQUES	J	F	М	Α	М	J	J	Α	S	0	N	D	TOTAL
MOIS													ANNUEL
		Moy	yenne d	es Tem	oérature	s minin	na sous	abris					
Moyenne station 2010/2023	1,3	0,8	2,8	4,5	8,5	12,7	14,1	13,4	10,3	7,6	4,2	2,1	
2022	1,2	1,8	3,4	5,3	11,0	14,0	14,8	15,6	11	11,0	6,1	3,0	
2023	3,4	1,0	4,6	5,2	10,0	14,7	14,5	15,2	13,7	8,8	6,2	4,9	
2024	1,6	5,5	4,7	6,3	10,3	13,1	14,9	14,6	11,8	10,4	5,5	3,7	
		Моу	enne de	es Temp	oérature	s maxin	na sous	abris					
Moyenne station 2010/2023	8,3	11,0	16,1	20,8	24,0	28,3	30,4	29,8	26,6	20,2	13,2	9,7	
2022	7,8	13,6	18,1	20,0	27,0	29,7	32,5	32,9	25,3	23,0	14,6	9,0	
2023	9,1	13,3	15,9	18,8	25,1	32,2	29,4	28,1	30,6	23,0	13,9	11,3	
2024	10,1	13,2	17,3	20,0	23,0	27,5	30,1	29,9	22,9	20,0	12,7	9,1	
		Pré	écipitati	ons hau	ıteur d'e	au moy	enne en	mm					
Moyenne station 2010/2023	59	46	42	42	68	64	52	49	50	66	61	75	674
2022	32	24	14	45	25	115	10	15	92	117	52	45	586
2023	106	5	86	35	31	80	59	78	53	76	98	75	782
2024	56	59	100	49	102	75	21	30	105	94	60	37	788
	Rayonnement global extérieur en joules/cm2/jour												
Moyenne station 2010/2023	275	574	1000	1530	1803	1959	1916	1667	1243	692	345	233	
2022	261	600	881	1364	1946	2007	1657	1302	837	505	240	144	
2023	163	437	620	919	1309	1642	1320	976	940	537	241	148	
2024	199	259	626	893	1005	1329	1195	1151	677	375	162	144	

Origine : station expérimentale du CVETMO

Année de mise en place : 2024

Renseignements complémentaires auprès de : Daisy HOUDMON (24_conc_fert_01 PRICE), CVETMO 196 rue des Montaudins 45560 SAINT DENIS EN VAL, tél 02-38-64-94-32, mail : cvetmo@cvetmo.com
Page 19 sur 19